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Abstract Endobiotic metabolites are associated with

biological processes in the body and therefore may serve as

biomarkers for disease states or therapeutic efficacy and

toxicity. However, information is limited regarding how

differences between blood matrices, patient backgrounds,

and sample handling affect human metabolite profiles. Our

objective was to obtain metabolite profiles from Caucasian

individuals, based on different matrices (plasma and

serum), subject backgrounds (male/female and young/old),

and storage conditions (2 or 10 freeze–thaw cycles). In

total, 297 metabolites were detected by LC/MS and GC/

MS, and more than 75 % of them were highly represented

in all sample groups. The multivariate discriminant ana-

lysis (OPLS-DA as a model) singled out the matrix type as

the most important variable influencing global metabolic

profiles; that is, more than 100 metabolites were signifi-

cantly different based on the matrix type. The influence of

subject backgrounds on global metabolic profiles was

consistent between plasma and serum. Age-associated

differences were more predominant in females than males,

whereas gender-associated differences were more prevalent

in young subjects than old individuals were. The relative

standard deviation of metabolite levels in subjects with the

same background ranked from 0.1 to 1.5. Moreover, the

changes of metabolite levels caused by freeze–thaw cycles

were limited, and the effect was more prominent in plasma

than serum. These data demonstrate the impact of matrix,

age, gender, and freeze–thaw cycles on the metabolite

profiles and reveal metabolites affected by these factors.

Thus, our results provide would useful fundamental infor-

mation for exploring and qualifying biomarkers for clinical

applications.
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1 Introduction

Biomarkers reflecting the severity or the presence of dis-

eases are useful tools for their diagnosis and treatment

(Gowda et al. 2008; Zineh and Huang 2011). Discovering

biomarkers that can forecast therapeutic efficacy and tox-

icity of drugs is also becoming clinically important for

developing new drugs and avoiding adverse events.

Endobiotic metabolites, which reflect both genetic and

environmental factors, represent the biological processes in

the metabolic system of cells, organs, as well as bodies

(Psychogios et al. 2011; He et al. 2012), and are therefore

expected to be suitable biomarker candidates. Metabolo-

mics is a useful tool for high-throughput biomarker iden-

tification, because it can measure a wide range of

metabolites at once (Hollywood et al. 2006; Wishart 2007).
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To date, however, the fundamental information regarding

the profiles of the stability and variance of human blood

metabolites remains limited, thereby retarding biomarker

exploration.

Plasma and serum, two matrices that are fractionized

from blood and that contain abundant circulating metabo-

lites, can be easily obtained with low invasiveness. While

both plasma and serum are commonly used in metabolo-

mics studies for biomarker exploration, several groups

have reported differences between their metabolite levels.

By determining the levels of 72 metabolites in human

plasma and serum, Liu et al. (2010) demonstrated that

while most amino acids were present at higher levels in

serum, pyruvate and citrate were observed to be at higher

levels in plasma. In addition, a large population study has

reported higher serum levels of several amino acids, such

as arginine, serine, phenylalanine, and glycine (Yu et al.

2011). Moreover, the levels of phosphatidylcholine,

erythritol, creatinine, hexadecanoic acid and glutamine

were correlated with life expectancy for small-cell lung

cancer in plasma but not in serum (Wedge et al. 2011). Liu

et al. (2010) also showed that the levels of metabolites in

serum were less affected by incubation of blood specimens

at 37 �C, compared to those in plasma, suggesting higher

stability of serum metabolites at 37 �C. To date, the impact

of handling and storage on a wide range of metabolites

from blood and serum remains unclear. In addition, the

information regarding the metabolite profiles in association

with subject background, such as sex and age, is also

limited. Previously, several analyses of the human plasma

serum metabolome demonstrated gender- and age-associ-

ated differences in the metabolite profiles (Lawton et al.

2008; Mittelstrass et al. 2011; Yu et al. 2012). However,

because these studies combined all ages when comparing

the metabolite profiles between sexes, we speculate that

precise gender-associated differences were confounded by

age-associated differences, and vice versa. Therefore, there

remains an unmet need to reveal gender- and age-associ-

ated differences in the metabolite profiles using human

subjects. Inter-individual variations in each metabolite

level should be elucidated using subjects with the same

background, since high inter-individual variations could

mask metabolite level changes that reflect disease pro-

gression and drug response. Nevertheless, comprehensive

metabolomics studies of these differences would warrant

accelerated exploration and evaluation of biomarkers for

clinical applications.

In the present study, using a global metabolomics

approach, we determine the levels of 297 endogenous low-

molecular-weight biochemicals (mostly hydrophilic),

including amino acids, carbohydrates, and lipids, in plasma

and serum samples obtained from human subjects catego-

rized by either age or sex. To minimize the possibility of

unexpected variations affecting the differences we focused

on, we controlled subjects’ age (young population,

25–34 years old; and old population, 55–64 years old),

ethnic genetics (healthy Caucasians), and food intakes

(overnight fasting). To examine the variables tested in this

study (matrix, gender, and age), data were processed by the

multivariate statistical analysis, i.e., orthogonal partial least

squares discriminant analysis (OPLS-DA) modeling, and

matrix type gave the clearest separation. Plasma and serum

both presented clear gender- and age-associated differ-

ences. Based on our data, we addressed the metabolic

profile differences between plasma and serum samples,

young and old populations, or males and females, as well

as inter-individual variations of the metabolite levels in

subjects with the same background. In addition, we also

examined the effect of freeze–thaw cycles on the levels of

metabolites in plasma and serum samples. Overall, our

current study provides fundamental information for future

biomarker exploration and qualifications.

2 Materials and methods

2.1 Collection of human blood and preparation

of plasma and serum

Blood samples were purchased from ProMedDx (Norton,

MA). ProMedDx collected samples after informed consent

was obtained rightly from all participants; the ethics

committee of the National Institute of Health Sciences

authorized the company as a validated provider and

exempted us from the committee’s approval for the use of

purchased blood samples. Venous blood was collected

from 60 healthy Caucasian volunteers in the morning after

fasting for 14 h. Participants were categorized into 4

groups as follows: young males (25–33 years old), old

males (55–64 years old), young females (25–34 years old),

and old females (55–63 years old). Each group included 15

individuals, except for the old female group, which had 14

individuals due to the presence of EDTA in serum samples

of 1 individual. Subject information is displayed in Sup-

plemental Table 1. Fresh blood from each individual was

simultaneously drawn into 10-mL Vacutainer Plasma

Separator Tubes containing K2-EDTA (Becton–Dickinson,

Franklin Lakes, NJ) and 10-mL Vacutainer Serum Sepa-

rator Tubes with clot activators (Becton–Dickinson). Fol-

lowing the manufacturer’s instructions, samples were

centrifuged, and serum and plasma were separated within

2 h of blood collection and then immediately frozen. Upon

receiving samples from PromedDX, all samples were

thawed on ice, divided into aliquots, and refrozen at

-80 �C until sample extraction. An aliquot of plasma and

serum samples from young males was subjected to 10
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freeze–thaw cycles, with thawing and freezing being done

on ice for 2 h and at -80 �C for 30 min, respectively.

Samples were subsequently stored at -80 �C.

2.2 Determination of endobiotic metabolite levels

The non-targeted metabolic profiling instrumentation

employed for this analysis combined three independent

platforms: ultrahigh performance liquid chromatography/

tandem mass spectrometry (UHPLC/MS/MS) optimized

for basic species, UHPLC/MS/MS optimized for acidic

species, and gas chromatography/mass spectrometry (GC/

MS) (Evans et al. 2009; Bourdonck et al. 2009). For each

plasma and serum sample, protein was precipitated and low

molecular weight compounds were extracted with metha-

nol that contained four standards to report on extraction

efficiency. The resulting supernatant was split into equal

aliquots for analysis on the three platforms. Aliquots, dried

under nitrogen and vacuum-desiccated, were subsequently

either reconstituted in 50 lL 0.1 % formic acid in water

(acidic conditions) or in 50 lL 6.5 mM ammonium bicar-

bonate in water, pH 8 (basic conditions) for the two

UHPLC/MS/MS analyses or derivatized to a final volume

of 50 lL for GC/MS analysis using equal parts bis-

trimethyl-silyl-trifluoroacetamide and solvent mixture

acetonitrile: dichloromethane: cyclohexane (5:4:1) with

5 % triethylamine at 60 �C for 1 h.

For UHLC/MS/MS analysis, aliquots were separated

using a Waters Acquity UPLC (Waters, Millford, MA)

instrument with separate acid/base-dedicated 2.1 mm 9

100 mm Waters BEH C18 1.7 lm particle columns heated

to 40 �C and analyzed using an LTQ mass spectrometer

(Thermo Fisher Scientific, Inc., Waltham, MA, USA)

which consisted of an electrospray ionization (ESI) source

and linear ion-trap (LIT) mass analyzer (Evans et al. 2009).

Extracts reconstituted in formic acid were gradient eluted

at 350 lL/min using (A) 0.1 % formic acid in water and

(B) 0.1 % formic acid in methanol (0 % B to 70 % B in

4 min, 70–98 % B in 0.5 min, 98 % B for 0.9 min),

whereas extracts reconstituted in ammonium bicarbonate

used (A) 6.5 mM ammonium bicarbonate in water, pH 8,

and (B) 6.5 mM ammonium bicarbonate in 95/5 methanol/

water (same gradient profile as above) at 350 lL/min. The

MS instrument scanned 99–1000 m/z and alternated

between MS and MS2 scans using dynamic exclusion with

approximately 6 scans per second. Derivatized samples for

GC/MS were separated on a 5 % diphenyl/95 % dimethyl

polysiloxane fused silica column with helium as the carrier

gas and a temperature ramp from 60 to 340 �C and then

analyzed on a Thermo-Finnigan Trace DSQ MS (Thermo

Fisher Scientific, Inc.) operated at unit mass resolving

power with electron impact ionization and a 50–750 atomic

mass unit scan range (Bourdonck et al. 2009). Metabolites

were identified by automated comparison of the ion fea-

tures in the experimental samples to a reference library of

chemical standard entries that included retention time,

molecular weight (m/z), preferred adducts, and in-source

fragments as well as associated MS spectra, and were

curated by visual inspection for quality control using

software developed at Metabolon Inc. (DeHaven et al.

2010).

Data extraction of raw MS files from both platforms was

performed as described previously (DeHaven et al. 2010).

Peaks were identified using Metabolon’s proprietary peak

integration software, and metabolites were identified by

automated comparison of the ion features in experimental

samples to a reference library of chemical standard entries

that included retention time, molecular weight (m/z), pre-

ferred adducts, in-source fragments, and MS/MS spectra.

The quality control and curation processes were designed

to not only ensure accurate and consistent identification of

true chemical entities but also remove systematic artifacts,

misassignments, and background noises. Processing of raw

ion feature data yielded 297 endobiotic metabolites of

known identity (75 metabolites from GC/MS, and 128 and

94 metabolites from negative and positive ion mode of LC/

MS, respectively). Since this study spanned multiple days,

samples from each experimental category were randomized

across run days and, following data collection, a data

normalization step was performed to correct variations

resulting from instrument inter-day tuning differences. For

monitoring of data quality and process variation, several

technical replicate samples created from a homogeneous

pool containing a small amount of all study samples were

injected throughout the run, interspersed among the

experimental samples in order to serve as technical repli-

cates for calculation of precision. In addition, process

blanks and other quality control samples are spaced evenly

among the injections for each day, and all experimental

samples are randomly distributed throughout each day’s

run. The median relative standard deviation (RSD) was

11 % for technical replicates and 6 % for internal stan-

dards. Each metabolite was corrected in run-day blocks by

registering the medians to equal one and normalizing each

data point proportionately. For samples with missing val-

ues for a metabolite, the minimum observed value of the

metabolite among all samples was applied as the missing

values. RSD of each metabolite was determined by divid-

ing standard deviation of each metabolite by the mean of

that metabolite in specific sample groups. Comparison of

the metabolite levels among groups was performed by t test

analyses (the paired t test, comparison between plasma and

serum or samples subjected to freeze–thaw cycles; and the

Welch’s t test, comparison between young and old subjects

or males and females) to assess statistical differences. In

this study, p \ 0.05 represents statistical significance and it
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was used for the pathway occupancy analysis. The average

values, standard deviation and RSD obtained from nor-

malized levels of each metabolite, filled values (% of

detectable samples), as well as the categories and pathways

of each metabolite, were displayed in Supplemental

Table 2.

2.3 OPLS-DA analysis

Metabolite data, following run-day normalization and

minimum value imputation, were loaded into SIMCA-P?

12 (Umetrics, Umea, Sweden), pareto-scaled, and analyzed

using OPLS-DA to visualize the variance among the

groups evaluated in this study. The OPLS-DA results were

given as score plots to represent the similarity of overall

metabolic profiles.

2.4 Pathway occupancy analysis

To construct pathway occupancy maps, pathways repre-

sented by more than four metabolites were picked and

scored with statistically different metabolites within spe-

cific pathways (p \ 0.05, scored as 1). The scored values

were divided by the number of metabolites within specific

pathways, resulting in the ratio of occupied metabolites

that reached statistical significance within a pathway.

3 Results

3.1 Global profiles of low-molecular-weight

biochemicals in plasma and serum of young

and old males and females

To generate an overview of group-based variances of

global metabolic profiles in different matrices (plasma and

serum), subject backgrounds (young and old males and

females), and sample storage (2 or 10 freeze–thaw cycles),

the OPLS-DA model was applied. Because the examina-

tion of the effect of freezing and thawing on metabolic

profiles was limited to the subset of plasma and serum from

young males, data from this subset were excluded from

modeling. As shown in Fig. 1, the plasma and serum

samples clustered into two distinct groups separated mainly

by component 1 (R2Y = 0.448 and Q2 = 0.29). Within

each cluster of plasma and serum sample groups, young

and old sample groups clustered into two groups separated

mainly by component 2. By age-based clustering, young

male and female sample groups were separated distinctly

from each other, whereas old sample groups showed no

clear separation between sexes. Overall, the trend of clus-

tering for ages and sexes was similar between plasma and

serum. In addition, age-associated changes of the metabolic

profiles were more pronounced in females than males.

3.2 Differences in the metabolite levels

between sample matrices

Our results show that the difference in the overall metabolic

profiles between plasma and serum was the greatest. Of 297

metabolites we measured, around 25 % were detected in less

than 80 % of the samples with a given group. As shown in

Fig. 2a, four individual gender-age groups and their averages

were assessed for filled values of each metabolite (the per-

centage of detectable samples within a group), which were

found to be almost the same between plasma and serum. Only

five peptides (bradykinin, glycylphenylalanine, glycylvaline,

aspartylphenylalanine, and phenylalanylphenylalanine) and

two lipids (1-myristroylglycerol and 2-arachidonylglycerol)

showed markedly higher filled values (C80 %) in either plasma

or serum than the other matrix (B40 %). Specifically, the filled

values in serum were much higher for glycylphenylalanine,

glycylvaline, aspartylphenylalanine, phenylalanylphenylala-

nine, 1-myristroylglycerol, and 2-arachidonylglycerol but were
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Fig. 1 OPLS-DA model of

overall metabolic profiles. Data

obtained from human plasma

(red) and serum (blue) samples

of young males (closed circle),

old males (open circle), young

females (close triangle), and old

females (open triangle) were

analyzed. The goodness-of-fit

parameter R2 and the predictive

ability parameter Q2 were 0.448

and 0.297, respectively
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lower for bradykinin. The levels of abovementioned seven

metabolites in plasma and serum are shown in Fig. 2b.

To get insights into the difference in the metabolic profiles

between plasma and serum, we counted the number of

metabolites that were statistically different (p \ 0.05)

between plasma and serum in each group with different

subject backgrounds (Fig. 2c). More than 100 metabolites

showed significantly different levels between plasma and

serum of all subject groups; among them, approximately 50

had more than 50 % changes, either higher or lower, in their

levels (see Supplemental Table 3). Similar trends in numbers

were observed for all four analyzed groups. Notable differ-

ences (i.e., more than twofold differences) between plasma

and serum were observed for 24, 28, 31, and 21 metabolites in

young males, old males, young females, and old females,

respectively. Examples of these metabolites include aspartate,

aspartylphenylalanine, glycerol-3-phosphate, and 2-palmi-

toylglycerol. To further understand pathway-based differ-

ences between plasma and serum, we identified the metabolic

pathways whose components diverged the most between the

two matrices by scoring the metabolites that were signifi-

cantly different between the two. To do this, the number of

statistically different metabolites in a pathway was divided by

the total number of metabolites detected in the pathway,

which was referred to as pathway occupancy. Figure 2d

shows the average values of pathway occupancy for all four

gender-age subject groups. The pathway occupancy of indi-

vidual groups was almost the same as the average (data not

shown). The pathways that displayed high levels of occu-

pancy contain metabolites involved in blood coagulation,

such as lysolipids (e.g., 1-stearoylglycerophosphoinositol),

monoacylglycerols (e.g., 2-palmitoylglycerol), fatty acids

CA
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Fig. 2 Differences in the metabolite characteristics between plasma

and serum. a The distribution of filled values (the percentages of

metabolites detected in each subject group). Data obtained from

plasma and serum are presented as the average values of all subject

backgrounds or each subject background. b Metabolites showing

significantly different levels between plasma and serum. Each dot

represents the data of an individual subject. Data shown are human

plasma (red) and serum (blue) samples from young males (closed

circle), old males (open circle), young females (close triangle), and

old females (open triangle). c The number of metabolites with

statistically significant differences and with at least 50 % changes in

their levels between plasma and serum. Values within boxes indicate

the number of metabolites. d Pathway occupancy rates of statistically

different metabolites between plasma and serum. AA amino acids,

P peptides, CH carbohydrates, E energy metabolites, Lip lipids,

N nucleotides, CoFV cofactors and vitamins. Blue the ratio of

metabolites higher in serum than plasma, red vice versa
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(e.g., eicosapentanoate), glycerophosphatidylcholine and its

components (e.g., glycerol-3-phosphate), polypeptides (e.g.,

bradykinin), dipeptides (e.g., aspartylphenylalanine), and

amino acids (e.g., aspartate).

3.3 Differences in the metabolite levels between ages

and sexes (subject backgrounds)

Next, we analyzed the differences in the metabolite profiles

between ages and sexes. Because age-associated differ-

ences in the metabolite profiles were more pronounced than

gender-associated ones, we first focused on the differences

between young and old subject groups. In agreement with

the overall metabolic profiles shown in Fig. 1, the number

of metabolites with statistically significant differences

(p \ 0.05) between young and old subjects (Fig. 3a) was

greater in females than males. Specifically, 95 and 93

metabolites in plasma and serum, respectively, reached

statistical significance in females, with 54 and 56 of which

showing more than 50 % differences in their levels (see

Supplemental Table 4). On the other hand, only 23 and 27

metabolites in plasma and serum, respectively, achieved

statistical significance in males, with 12 and 16 of which

showing more than 50 % level differences (see Supple-

mental Table 4). Plasma and serum samples demonstrated

similar trends in the fold differences and statistical signif-

icance for both males and females. More than twofold

differences between young and old subjects were observed

for 4, 4, 25, and 20 metabolites in men’s plasma and serum,

and women’s plasma and serum, respectively. Examples of

these metabolites include pregnenolone sulfate (in both

sexes) and 5alpha-pregnan-3beta, 20alpha-diol disulfate

(only in females).

To get insights into the differences in the metabolic

profiles between young and old subjects, we next deter-

mined the pathway occupancy of metabolites with signifi-

cantly different levels between young and old groups

(Fig. 3b). In females, a broad range of metabolic pathways

for amino acids (such as alanine, asparagine, phenylace-

tylglutamine, and p-cresol sulfate) were predominant in the

old population, whereas in the young population, metabolic

pathways for fatty acids (such as palmitate and stearate)

and sterol/steroids (pregnane metabolites, such as 5alpha-

pregnan-3beta, 20alpha-diol disulfate) were dominant. In

A

B

Hemoglobin and porphyrin metabolism
Pyrimidine metabolism, uracil containing

Purine metabolism
Sterol/Steroid

Monoacylglycerol
Lysolipid

Glycerolipid metabolism
Bile acid metabolism
Carnitine metabolism

Fatty acid, dicarboxylate
Fatty acid, monohydroxy

Long chain fatty acid
Medium chain fatty acid

Essential fatty acid

Nucleotide sugars, pentose metabolism
Glycolysis, gluconeogenesis, pyruvate metabolism

Fructose, mannose, galactose, starch, and sucrose metabolism
Polypeptide

gamma-glutamyl
Dipeptide

Urea cycle; arginine-, proline-, metabolism
Cysteine, methionine, SAM, taurine metabolism

Valine, leucine and isoleucine metabolism
Tryptophan metabolism

Phenylalanine & tyrosine metabolism
Alanine and aspartate metabolism

Glycine, serine and threonine metabolism

AA

Pep

CH
E

Lip

N
CoFV

0 0.2 0.4 0.8 1

Male Female

Young

Old

0.6 0 0.2 0.4 0.8 10.6

32

26

11

6

32

35

8

6

204

202

270

274

5

6

3

5

24

28

5

6
Male

PL

SR

Female
PL

SR

Fold change > 1.5 Fold change ≤ 1.5

Fold change ≥ 2/3Fold change < 2/3

Old > Young, P < 0.05

Old < Young, P < 0.05

C

D

Hemoglobin and porphyrin metabolism
Pyrimidine metabolism, uracil containing

Purine metabolism
Sterol/Steroid

Monoacylglycerol
Lysolipid

Glycerolipid metabolism
Bile acid metabolism
Carnitine metabolism

Fatty acid, dicarboxylate
Fatty acid, monohydroxy

Long chain fatty acid
Medium chain fatty acid

Essential fatty acid

Nucleotide sugars, pentose metabolism
Glycolysis, gluconeogenesis, pyruvate metabolism

Fructose, mannose, galactose, starch, and sucrose metabolism
Polypeptide

gamma-glutamyl
Dipeptide

Urea cycle; arginine-, proline-, metabolism
Cysteine, methionine, SAM, taurine metabolism

Valine, leucine and isoleucine metabolism
Tryptophan metabolism

Phenylalanine & tyrosine metabolism
Alanine and aspartate metabolism

Glycine, serine and threonine metabolism

AA

Pep

CH
E

Lip

N
CoFV

Young Old

Male

Female

0 0.2 0.4 0.8 10.6 0 0.2 0.4 0.8 10.6

Young
PL

SR

Old
PL

SR

Fold change > 1.5 Fold change ≤ 1.5

Fold change ≥ 2/3Fold change < 2/3

Female > Male, P < 0.05

Female < Male, P < 0.05

5

4

7

8

4

5

5

8

268

269

252

247

6

8

23

25

14

11

10

9

TCA cycle

Pathway occupancy
(ratio of significantly different metabolites)

TCA cycle

Pathway occupancy
(ratio of significantly different metabolites)

297 metabolite total297 metabolite total

Fig. 3 Differences in the metabolite levels between ages and sexes.

a, c The number of metabolites with statistically significant differ-

ences and with at least 50 % changes of the levels between young and

old (a) or male and female (c) subjects. Values within boxes indicate

the number of metabolites. PL plasma, SR serum. b, d Pathway

occupancy rates of statistically different metabolites between young

and old populations (b) or males and females (d). AA amino acids,

P peptides, CH carbohydrates, E energy metabolites, Lip lipids,

N nucleotides, CoFV cofactors and vitamins. Blue the ratio of

metabolites higher in old subjects (b) or females (d) than young

subjects (b) or males (d) respectively, red vice versa

K. Saito et al.

123



males, specific types of amino acids (phenylacetylgluta-

mine and p-cresol sulfate) produced by gut microflora

showed age-associated differences, similar to females;

however, most pathways had little significant difference

between young and old males, except for the TCA cycle

metabolites, such as citrate and malate, which showed

higher levels in old subjects. These results indicate that

age-associated differences in the metabolite profiles are

more prominent in females than males.

Subsequently, we addressed the differences in the

metabolite levels between male and female samples. In

agreement with the overall metabolic profiles shown in

Fig. 1, the number of metabolites with statistically signif-

icant levels differences (p \ 0.05) between males and

females (Fig. 3c) was greater in young subjects than old

subjects. Specifically, 50 and 45 metabolites in plasma and

serum, respectively, showed significant difference in young

subjects, with 17 of both of which displaying more than

50 % level differences (see Supplemental Table 5). On the

other hand, only 28 and 29 metabolites in plasma and

serum, respectively, reached statistical significance in old

subjects, with 15 and 19 of which showing more than 50 %

level differences (see Supplemental Table 5). Plasma and

serum samples demonstrated similar trends in the fold

changes and statistical significance for both young and

aged subject groups. More than twofold differences

between males and females were observed for 5, 4, 7, and 8

metabolites in plasma and serum of young subjects, plasma

and serum of old subjects, respectively. Examples of these

metabolites included pyroglutamine (in both groups) and

5-alpha-pregnan-3beta, 20alpha-diol disulfate (in young

subjects only).

Because sample subjects have significantly different

BMIs between male and female, it remains possible that

BMI is confounding factor of the gender-associated dif-

ferences. To assess this possibility we selected young

population, which have much severe difference in average

BMI (26.9 for male and 37.0 for female). Young female

subjects were divided into two groups as follows: normal

BMI (range 24.9–35.4, which BMIs are within comparable

range of those in male) and high BMI (range 42.8–49.7)

(see Supplemental Fig. 1a). Of metabolites significantly

different between normal BMI and high BMI female

groups, only two each of metabolites (glutaroylcarnitine

(C5) and cortisol for plasma and 3-(4-hydroxy-

phenyl)lactate and citrulline for serum) out of 50 and 45

gender-associated metabolites in plasma and serum,

respectively, were BMI-dependent (Supplemental Fig. 1b).

In addition, OPLS-DA analysis with young male, young

female with normal BMI, and young female with high BMI

demonstrated clear separation of male and female but not

normal BMI and high BMI in both plasma and serum

(Supplemental Fig. 1c). Taken all together, BMI of subject

is not confounding factor of gender-associated difference

in metabolite profiles.

We also described the pathway occupancy of the

metabolites with significantly different levels between

male and female samples (Fig. 3d). A larger number of

metabolic pathways was highlighted in young subjects,

even though the differences in occupancy rates between

sexes were moderate compared to those between ages.

Fatty acids (such as myristate and palmitoleate) were much

more dominant in young females, whereas a broad range of

amino acids (pyroglutamine and asparagine) were more

dominant in young males. While sex steroid metabolites

were moderately highlighted in both young and old sub-

jects, the levels of androgen metabolites (4-androsten-

3beta, 17beta-diol disulfate and 5alpha-androstan-3beta,

17beta-diol disulfate) were consistently higher in young

and old males. In addition, the levels of progesterone

metabolites (5alpha-pregnan-3beta, 20alpha-diol disulfate

and pregnanediol-3-glucuronide) were only higher in

young females, whereas the levels of pregnenolone

metabolites (pregnen-diol disulfate and 21-hydroxypregn-

enolone sulfate) were only higher in old males.

3.4 Inter-individual variations in subject backgrounds

Inter-individual variations of the metabolite levels are

critical factors for designing metabolomics studies on the

exploration and/or qualification of biomarker candidates,

since large inter-individual variations in healthy states

could mask the changes of metabolite levels in response to

diseases or drugs. Therefore, we determined inter-individ-

ual variations of the metabolite levels in each subject

background by calculating RSD. The RSDs of the metab-

olite levels were found to be constant among all subject

background groups (data not shown). As shown in Fig. 4,

the RSDs of determined metabolites were largely distrib-

uted from 0 to 1.5 and showed almost similar patterns

between plasma and serum samples. In total, 173 and 169

metabolites in plasma and serum, respectively, had a score

of 0.5 or less.

3.5 Effect of freeze–thaw cycles on the metabolite

profiles

Lastly, we examined the effect of freeze–thaw cycles on

the stability of metabolites using plasma and serum sam-

ples from young males. The number of metabolites show-

ing statistical significance (p \ 0.05) is shown in Fig. 5a.

While the overall difference between 2 and 10 freeze–thaw

cycles was smaller than that between matrices or subject

backgrounds, 43 and 19 metabolites in plasma and serum,

respectively, showed statistically significant differences,

with 7 and 3 of which displaying more than 50 % changes
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in their levels (see Supplemental Table 6). These results

indicate that the plasma levels of metabolites were more

sensitive than those in the serum were, and that the

majority of their changes were enhanced by 10 freeze–thaw

cycles. More than twofold differences between 2 and 10

freeze–thaw cycles were observed for 4 and 2 metabolites

in plasma and serum, respectively. Examples of these

metabolites include allantoin (in both plasma and serum)

and bradykinin (in plasma only).

In addition, pathway occupancy was also analyzed to

delineate sensitive metabolic pathways against freeze–thaw

cycles (Fig. 5b). Compared to the serum samples, a larger

number of metabolic pathways in plasma were affected; in

particular, pathways that are associated with peptides (such

as bradykinin), low-molecular-weight lipids (such as hex-

adecanedioate), and glycerolipid metabolites (such as

choline) were affected more in plasma than serum. These

results suggest that the sources of these metabolites, such

as proteins and large lipids, may be broken down by

freeze–thaw cycles. Notably, the metabolic pathway of

cofactors and vitamins (e.g., heme, biliverdin, and (E,E)-

bilirubin) was affected in both plasma and serum samples.

4 Discussion

In the present study, we demonstrate that the global met-

abolic profiles of two blood sample matrices (plasma and

serum) were comparable; only a few metabolites were

specific to either one or the other. Plasma and serum also

exhibited compatible age- and gender-associated patterns

in the overall metabolic profiles, suggesting both matrices

compatibly reflect the variation of metabolite profiles

caused by subject backgrounds. In addition, plasma and

serum presented similar inter-individual variations of the

measured metabolites among subjects with the same

background. Together, these results suggest that serum and

plasma are both useful matrices, with which metabolomics

can be performed to discover and/or qualify biomarker

candidates. However, more than one-third of the metabo-

lites detected in this study showed significantly different

levels between plasma and serum. This result underscores

the need for a uniform matrix type when designing meta-

bolomics studies to identify and/or evaluate biomarkers.

While our results suggest that both plasma and serum

are suitable matrices for metabolomics studies, each of

them has different characteristics. We found that the

metabolites in serum were more stable against cycles of

freezing and thawing than those in plasma were. In addi-

tion, Liu et al. (2010) previously demonstrated that the

analytical peak areas in serum were less affected by 37 �C

incubation of blood than those in plasma were. Based on

these findings, we speculate that the metabolites are more

stable in serum than plasma.

The characterization of differences in the metabolic

pathways between matrices, subject backgrounds, and

freeze–thaw cycles was also a focus of our present study.

The pathways that were affected by matrices, subject

backgrounds, and freeze–thaw cycles were identified by the

pathway occupancy analysis (Fig. 6). The following core

pathways are affected by variables: (A) pathways related to

blood coagulation (differences between plasma and

serum); (B) amino acids metabolized by gut microflora

(differences between ages); (C) glucose catabolism

(female-related differences between ages); (D) steroid

hormone metabolism (common and age-specific differ-

ences between sexes); and (E) bilirubin synthesis (affected

by freeze–thaw cycles).

Blood coagulation, which releases phospholipases and

proteases by platelet activation (Zucker and Nachmias

1985), represents the major differences between plasma

and serum. Metabolites produced by phospholipases, such

as lysophospholipids and fatty acids, were found to be at

higher levels in serum than plasma (Fig. 6a), in agreement

with previous reports (Aoki et al. 2002; Yu et al. 2011). In

addition, other lipid metabolites, including monoacylglyc-

erol and glycerophosphorylcholine, were also detected in

the present study. It is also noted that peptides were present

at higher levels in plasma, whereas dipeptides and free

amino acids were present at higher levels in serum.

Phenylacetylglutamine and p-cresol sulfate are catabo-

lites of aromatic amino acids, phenylalanine and tyrosine,

respectively. Bacteria of the gut microflora are responsible

for the production of these aromatic amino acid derivatives

(Smith and Macfariane 1996). In this study, phenylacetyl-

glutamine and p-cresol sulfate were present at higher levels
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in old subjects than in young individuals, without any age-

associated decrease in the levels of their precursor aromatic

amino acids in both males and females (Fig. 6b). While

p-cresol sulfate has been reported as an age-associated

biomarker (Lawton et al. 2008), our results suggest that

phenylacetylglutamine, the catabolite of phenylalanine,

may also serve as an age-associated biomarker.

Age-associated differences in females are the most pro-

found among various comparisons of subject backgrounds

(Fig. 1). Fatty acids are present at higher levels in young

female subjects, whereas amino acids are at higher levels in

old subjects (Fig. 6c). Because overnight fasting minimizes

food-derived influences on the levels of amino acids, fatty

acids, and those catabolized from glucose, glucose-related

catabolism could be different between young and old female

subjects. It has been reported that progesterone treatment

increased lipogenesis from glucose, pyruvate, and lactate in

the liver of pregnant rats (Lorenzo et al. 1986). In the present

study, pregnanediol metabolites, the downstream metabo-

lites of progesterone, showed much higher levels in young

females than old females (Fig. 6d), suggesting that the

decreases in progesterone levels depend on their age.

Therefore, progesterone may play a role in the direction of

glucose catabolism, resulting in female-specific differences

in the metabolite profiles between young and old subjects.

Since pregnenolone is the source of sex hormones, such

differences may be associated with the drastic loss of female

sex hormones upon reaching menopause.

Progesterone synthesis is regulated by estrogen (Endo

et al. 1998). In agreement with decreased estrogen levels in

post-menopausal women (Burger et al. 1999; Bjornerem

et al. 2004), progesterone metabolites showed lower levels

in old female subjects than young female subjects, and the

levels in old females were comparable to those in males

(Fig. 6d). In contrast, the decrease was quite limited for

androgens, and their levels were still higher in old males

than old females (Sowers et al. 2001; Muller et al. 2003),

even though their levels were reported to be gradually

decreased in an age-dependent manner. Together, these

results indicate that the observation of higher levels of

androgen metabolites in males than females was common

between young and old subjects.
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As for the changes by freeze–thaw cycles, heme deg-

radation was the only pathway common between plasma

and serum (Fig. 6e). Biliverdin and bilirubin were

decreased and increased, respectively, by repeated freeze–

thaw cycles. While it remains unclear as to whether bili-

verdin reductase is released into plasma or serum, the

enzyme may be activated during freeze–thaw cycles and

then catalyze biliverdin to bilirubin. On the other hand,

peptides and several types of lipids were increased by more

freeze–thaw cycles only in plasma, possibly due to the

breakdown of much larger proteins and/or lipids by phos-

pholipases and/or proteases, which may be removed from

serum during the coagulation process.

Metabolites whose levels are not highly sensitive to

differences in age or gender may have potential as bio-

markers. In addition, biomarkers that are easy to detect and

show low inter-individual variations might have even

greater utility. In this study, we identified a subset of bio-

chemicals sharing the following three characteristics

(Supplemental Fig. 1a): ease of detection (average filled

value, more than 80 %), low gender- or age-associated

differences (less than 50 % changes and without statisti-

cally significant level differences), and low inter-individual

variations (RSD, 0.5 or less). Among 297 metabolites

detected in this study, 124 passed all three criteria in

plasma and/or serum (Supplemental Fig. 1b; Supplemental

Table 7). Of these 124 metabolites, 103 were shared by

both plasma and serum; therefore, we suggest that these

103 metabolites are well-controlled in healthy adults and

may be primary candidates for biomarkers. Alternatively,

metabolites whose levels are drastically modulated by

diseases or drugs could overcome the limitations of these

background variations and serve as biomarkers. In the

present study, Caucasians who had an overnight fast were

employed as experimental subjects. It has been reported

that nutrients and ethnicity also affect the metabolic pro-

files. For example, it was suggested that fruits and vege-

tables intake are strongly associated with the levels of
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glycerophospholipids and sphingomyelines (Menni et al.

2013). Comparison of northern and southern Chinese

populations using an NMR spectroscopy-based metabolo-

me-wide association approach also demonstrated different

levels of several amino acids and carbohydrates (Yap et al.

2010). Nevertheless, the differences associated with nutri-

ents and/or ethnicity should also be taken into consider-

ation for the exploration of biomarkers.

5 Concluding remarks

The discovery of biomarkers capable of forecasting disease

states and efficacy/toxicity of therapeutic drugs is clinically

important. While metabolomics has been applied to many

research studies to identify such biomarkers, fundamental

information regarding the metabolite profiles of different

blood matrices and subject backgrounds is still limited. The

findings of this study clearly suggest that plasma and serum

are both useful matrices for exploring biomarkers among

low-molecular-weight biochemicals and that the metabo-

lites were more stable in serum than plasma. In addition,

our results also show that several metabolites were scarcely

detectable, had large age- and gender-associated differ-

ences, and possessed high RSD values, all of which are

characteristics that should be taken into consideration when

selecting biomarker candidates. Taken together, our pres-

ent study provides useful fundamental information for

exploring and selecting biomarkers in future clinical stud-

ies and may also help establish the regulatory standards for

these studies.
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